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The influence of the elastic modulus on computed
craze surface stress distributions

L. BEVAN*, L. KONCzOL, W. DOLL
Fraunhofer-Institut fur Werkstoffmechanik, Wohlerstrasse 11, D-79108 Freiburg, Germany

The surface stresses along the contour of a crack-tip craze in a glassy thermoplastic can be
computed from measured craze displacements by applying finite element methods. It is
shown that calculated crack-tip craze surface stress distributions are highly dependent on
the accuracy of the evaluation of the elastic modulus of the bulk polymer. Methods of
estimating the modulus are considered. A method based on fitting the Dugdale model to the
measured craze profile gives rate- and time-dependent moduli which are consistent with
measured moduli at strain levels comparable with those in the compact tension specimen
near the interface with the craze. The major part of the sample is at a much lower strain level
and a new method, based on interference optical measurements and finite element
computations of crack displacements, is developed to estimate the appropriate modulus.
Craze surface stresses are computed for two cases in which the estimated modulus for the
two parts of the sample significantly differ. In a creep test, the modulus near the craze is
lower than that in the remainder of the specimen and it is seen that any stress concentration
at the crack tip is suppressed. This explains why the crack remains stationary while the craze
continues to grow. In the case of crack propagation, the modulus in the region around the
craze has the higher value and the stress at the crack tip increases. The crack therefore

continues to propagate.

1. Introduction

The finite element method has been previously used to
compute, from interference optics measurements, sur-
face stress distributions for crack-tip crazes under
static [ 1], quasi-static [ 2] and fatigue [3] loading. The
stress distributions may differ in detail but, neverthe-
less, there is a general similarity with a maximum at
the crack tip followed by a sharp decrease and then
either an almost constant stress or a very gradual
stress decrease over most of the craze length. Close to
the craze tip another stress peak may arise, depending
on craze tip profile as measured or extrapolated start-
ing from the last interference fringe, respectively. In
the computation of stresses a constant modulus in the
compact tension specimen is assumed. Its value was
obtained from the measured craze profile, using the
method described in section 3.2.1. On different time
stages it was in good agreement with measured [4]
time-dependent moduli at a strain level similar to that
in the polymer in the close vicinity of the craze. How-
ever, the strain is low in the major part of the speci-
men, and the modulus will differ from that in the
region near the craze. Thus the question arises as to
whether or not this may influence the craze stress
distribution. Therefore initially a new method, is de-
veloped to estimate the bulk modulus based on crack
displacements. Second, craze surface stress distribu-

tions, based on the two moduli, are computed and are
compared with those obtained by the previous
method.

2. Experimental and computational
procedures

2.1. Experimentation

The geometry of single crack tip crazes as well as crack
openings in transparent thermoplastics can be meas-
ured using optical interferometry [4]. The crack tip
area with a craze in a fracture mechanics specimen
(e.g. compact tension (CT) type, as shown in Fig. 1) is
illuminated in reflection with monochromatic light,
yielding interference fringe patterns. In order to calcu-
late the crack openings and craze thicknesses, the
positions of the individual fringes relative to the crack
tip are determined by scanning in a microden-
sitometer. The thickness 2v of crack and craze opening
at position x are given by basic interference theory by

200 = 2 (1 12) (m
2p
where n is the fringe order (n =1,2,3... at bright
fringesand n = 1.5, 2.5, 3.5 ... at dark fringes), A is the
wavelength of the light and p is the refractive index
within a crack or craze.
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Figure 1 Sketch of a compact tension (CT) specimen as used for
interferometric measurement of craze contours with detail enlarge-
ment of the crack tip area with a craze zone.

To determine the strain dependent refractive index
L of the crazed material the stretch on the polymeric
matter within the craze has to be quantified. This is
performed according to the following procedure [3]:

The craze extension ratio A is defined by

_21)

To

A 2
where 1, is the primordial thickness, that is the thick-
ness of the layer of bulk which fibrillates to form
a craze. The craze extension ratio may also be ob-
tained from the following equation, coupling the
Lorentz—Lorenz equation with interference optics
theory

we—1 pg—11
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where i, is the refractive index of the bulk polymer.

Since the value i, of the refractive index of the craze
in the unloaded state is known from independent
measurements [4], as is [, the primordial thickness
profile can be readily obtained from the interference
optics measurements on the unloaded craze.

The refractive index of the loaded craze can be
estimated from the ratio of the fringe numbers in the
loaded and the unloaded craze, i.e., ny/n,. This index is
used as a first estimate of . and the craze thickness is
obtained at various positions corresponding to the
distances of the interference fringes from the crack tip.
The values of A, given by Equations 2 and 3 are
compared and an iterative approach is used, adjusting
the estimate of ., if necessary, until consistent results
are obtained.

The symbols (*) for the loaded and (o) for the
unloaded craze in Fig. 2 exhibit the data of the fringe
patterns taken from a craze in poly(methyl melarate)
(PMMA), in the loaded and the unloaded states as
evaluated with Equation 1 using refractive indices
determined according to the procedure described
above.

The position of the craze tip and the maximum
craze width, 2v, at the very crack tip, indicated in
Fig. 2 by the symbols (e), have to be estimated by
extrapolation of the measured data. This can be per-
formed using fracture mechanics models, such as the
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Figure 2 Evaluated openings (with Dugdale fit of the craze contour)
of a crack tip craze in PMMA as measured interferometrically in the
(O) loaded (K; = 0.54 MPa m'/?) and the (*) unloaded state.

Dugdale model as described in Section 3.2.1, or by
fitting mathematical curves of different orders. In the
case of PMMA as shown in Fig.2 the Dugdale fit
gives reasonable results.

In the evaluation of the crack opening using Equa-
tion 1 the refractive index of air, p = 1, has to be used.
However, in contrast to the interference fringe pattern
of the craze zone, the fringes of the crack opening do
not begin with fringe order n = 1 but with a larger
number due to the crack tip displacement. If the fringe
order at the crack tip is not determined by counting
the fringes passing the crack tip during specimen load-
ing, then it has to be estimated later by other means.
As a first estimate the fringe order in the craze next to
the crack tip may be used, followed by further adjust-
ments as described in Section 3.2.3.

2.2. Finite element analysis

The finite element code currently used is ADINA [5]
with a mesh that differs from that used previously. The
mesh has been redesigned while retaining the general
approach of a fine mesh in the craze and crack tip
region, with a transition to a coarser mesh in the bulk
of the compact tension specimen. The region from the
crack edge to the loading pins is ignored and, in the
fine mesh, the number of elements is reduced without
changing the nodal spacing in the major portion of the
craze. Fig. 3a shows the coarse mesh for the outer
portion and Fig. 3b shows the fine mesh which in-
cludes the craze and the crack tip zone.

In order to estimate craze surface stresses it is neces-
sary to know the applied load and the craze displace-
ments. The total displacement, 2w, of the two craze
surfaces is given by

2w =20 — 1 “4)
but 1y = 2v/A, so that
2w = 20(A, — 1)/ A, (5)

The displacement w(x) of one craze surface is pre-
scribed in the finite element input and the required
stresses are included in the output. The most accurate
estimates of stresses are at integration points, and
stresses are plotted along a line joining the integration
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Figure 3 Finite element idealization of the compact tension (CT)
specimen with (a) coarse mesh for the main part of sample and (b)
fine mesh for the craze and crack tip region (crack and craze tips are
indicated by arrows).

points nearest the craze. This line is parallel to the
craze for the regular craze mesh shown.

3. Effect and evaluation of modulus

3.1. Effect on stress distribution

The craze stress distribution in a loaded sample de-
pends on the applied load, the craze surface displace-
ments and the elastic modulus E of the bulk polymer.
The resultant stresses are usually determined, but it is
possible to separate the effects of load and surface
displacements as is illustrated schematically. The
stress distribution of Fig. 4a is due to the applied load
and is in fact a crack stress distribution, over the craze
length, since the craze displacements are suppressed.
The arrow indicates the position of the craze tip, and
the origin of the graph (and subsequent ones) is an
integration point 1.13% of the craze length ahead of
the crack tip. This stress distribution is independent of
the elastic modulus. The second stress distribution,
Fig. 4b, is that of what is termed the self-surface stress.
This is the distribution which would be required to
maintain the craze surface displacements in the ab-
sence of the applied load [6]. The self-surface stress
distribution is directly proportional to the elastic
modulus of the polymer.

The stress distribution, computed including the
load and the craze displacements, shown in Fig. 4c is
the sum of the first and second stress profiles. The
craze surface stress distribution is clearly very depen-
dent on the material’s modulus, and it will be shown
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Figure 4 Stress distributions along a crack tip craze due to (a) load,
and (b) craze surface displacements, and (c) the combined effects of
load and craze displacements.

that there is a wide variation in the computed stress
distributions, depending on the assumptions concern-
ing E and its determination for a given case.

Stresses in crack tip crazes may also be estimated
using the distributed dislocation stress analysis of
Wang and Kramer [7]. The elastic modulus depend-
ence is even greater in this case since the entire stress
distribution is directly proportional to E.

3.2. Modulus evaluation
3.2.1. Fitting of the Dugdale model to the
craze profile
Craze zones in polymers have the shape of thin
wedges. A good description of the shape and size of
this yielded zone at the crack tip can be provided by
the plastic zone size model proposed by Dugdale [8]
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and also by the cohesive force model of Barenblatt [9]
which have been further developed by various authors
(see reference [4]).

The Dugdale model implies a condition that there
should be no singularity at the tip of the crack assum-
ing a constant stress along the plastic zone at the crack
tip. The relations of the dimensions of a Dugdale type
craze zone to material parameters such as craze stress
o, and elastic modulus E are described by equations
containing the fracture mechanics parameter stress
intensity factor K;. The craze length s can be expressed
by;

n K?

S=—-—
8 o2

(6)
and the craze width 2v(x) at a distance x from crack
tip is derived as;

8o.s X 1+¢&
with & = (1 — x/s)"/?,x >0, and the crack tip at
x=0.

For the case of the maximum craze width at the
crack tip 2v Equation 7 may be reduced to;

K¢

= ——
v o E*

®)
To apply the Dugdale model to an interferometrically
measured craze contour the following points should
be remembered. As already noted in Section 2.1, the
location of the craze tip and hence the craze length
s cannot be measured directly, but can, in a similar
way to the maximum craze width 2v, only be obtained
by extrapolation. Using the Dugdale model for extra-
polation, the information contained in all measured
points along the craze contour is fully utilized. In such
a procedure, all the experimental points for a particu-
lar craze are used together with Equations 6 and 7 to
calculate by iteration that value of s (and hence the
corresponding values of E and o) which minimizes
the variation in E along the length of the craze.

The thus extrapolated position of a craze tip is
shown in Fig. 2 as the closed circle (®). Also shown
are the lines corresponding to the displacements 2v(x)
calculated from Equation 7 using the fitted values of
s, E and o.. Comparing the calculated and the meas-
ured values, a fairly good agreement along the contour
of the loaded craze is observed while there is a major
discrepancy in the case of the unloaded craze. This
becomes reasonable taking into account that the
Dugdale model is valid only if craze dimensions as
well as the acting load and hence K; — which causes
craze formation — are consistent. Thus the Dugdale fit
is only meaningful for a fully loaded craze.

In some cases, other loading conditions or different
thermoplastics, the craze contour obtained by a
Dugdale fit can differ to a greater extent from the
measured data. This would result in an unrealistic
craze length (and also maximum craze width). In
such cases s and 2v obtained by mathematical (e.g.,
linear) extrapolations seem to be more reasonable.
Such deviations of the craze shape from the contour
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Figure 5 Creep moduli E in PMMA for different strains as a func-
tion of loading time ¢, determined from the crack tip region accord-
ing to the Dugdale model, and from macroscopic measurements
[4]. Key; (- - —) dynamic tests, (—) creep moduli (tensile tests), (- - -)
creep moduli from Dugdale model for a moving crack and (... ... )
creep moduli from Dugdale model for a static crack.

predicted by the Dugdale model indicate other than
constant stresses along the craze contour.

Fitting the Dugdale model to crack tip crazes meas-
ured under different loading conditions, such as crack
propagation under quasi-static load, or craze growth
under static load enables the determination of the rate
dependent modulus E as a function of crack speed
da/dt or loading time t. This was performed for
PMMA over a wide range of crack speeds and times.
The results are assembled in Fig. 5 as E(t) over a time
interval of almost 14 decades [4]. Comparing the
moduli from the Dugdale fit with macroscopically
measured creep moduli at different strains, the micro-
mechanically determined data correspond at the onset
of slow crack propagation (corresponding time of
about 10*-10° s) to a curve at about 1% strain, shifti-
ng towards higher strains during creep and with de-
creasing time turning back to lower strains in the
transition regime to fast crack growth (about 10™*s).

An elastic strain of about 1% just in front of a slow-
ly propagating craze was determined using the frac-
ture mechanics approach [4]. Increasing strains dur-
ing creep and crack propagation due to local heating
at an increasing crack speed seem to be most reason-
able as well as decreasing strains at high rates due to
a drop in molecular mobility. Thus the elastic
modulus E determined by fitting the Dugdale model
to the measured craze data can be assumed to be the
modulus effective in the close vicinity of the crack tip
craze under the given conditions.

3.2.2. Craze displacement method

This is similar to the previous method except that it is
based on the displacement profile and not the thick-
ness profile. This method will give higher estimates of
E, which is inversely proportional to the displace-
ment, and as can be seen from Equation 5 the ratio of
the two estimates will be A /(A — 1). Thusif A_is 3 the
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Figure 6 Craze surface stress distributions of a crack-tip craze in
PMMA, loaded under creep conditions for 1.6x107s at
K;=0.51 MPam'?, computed with Young’s moduli of (a)
2.516 GPa (the Dugdale craze stress op = 27.25 MPa is also in-
dicated) and (b) 1.569 GPa.

modulus estimated by the displacement method is
50% higher than the Dugdale value. The former esti-
mate is an unrealistically high one for the craze area
and also it is unlikely to give a reliable estimate for the
remainder of the sample since it is based on measure-
ments at the craze interface. However, the craze dis-
placement method is of interest since it should be the
modulus that produces the constant stress distribu-
tion predicted by the Dugdale model. This is checked
by the finite element method.

Idealized displacements (contour fitted to the
Dugdale model) are used although the analysis is
based on a long-term, ca. 6 months, creep craze in
PMMA which had an almost constant extension ratio
and a craze thickness profile in close agreement with
the model. The moduli used in the computation are
those estimated for the actual craze, i.e. 2.516 GPa
from the displacement method and 1.569 GPa from
the thickness profile. Fig. 6(a and b) display the two
stress distributions due to the two separate moduli.
The one with the greater modulus is in very close
agreement with the Dugdale stress, which is also
shown, while the lower modulus gives a distribution
which, as expected, is consistent with previous results
[1-3] since the same method was used to evaluate E.
It should be pointed out that there is usually some
additional inaccuracy in the finite element results for
the element adjacent to the crack tip. This was in fact
the case when initially, the prescribed craze displace-
ment at the crack tip was set equal to the theoretical
value. The computed stress at the Gauss point nearest
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Figure 7 Variation of the square of the crack opening displacement
(in a PMMA specimen loaded for 8.5x10*s at K;=0.51
MPa m'/?) with distance from crack tip for initial fringe order, n,
values of; (H) 3, (A) 4 and (@) 5.

the tip was 6.7 MPa below the Dugdale stress while
the stresses at the other two points were about 2 MPa
too high. The prescribed displacement solely at the
crack tip node was reduced by 2.7% in order to obtain
the shown stress distributions.

3.2.3. Crack surface displacement method

Displacements of the crack surface are calculated
from the interference optics measurements. The re-
duced modulus E* may be calculated from the
equation

8 | 1/2
2000 - 5 (1) o)

where K is the stress intensity factor in Mode 1, r is
a polar co-ordinate with the origin at the crack tip and
E* = E in plane stress or E* = E/(1 — v?) in plane
strain, respectively.

It can be seen from Equation (9) that E* may be
calculated from the slope of a graph of (2v)* against r.
It is seen from Fig. 7 that there is an excellent correla-
tion (the correlation coefficient ranging from 0.99949
to 0.99971) for the three shown cases. The exact fringe
order is not known and the three lines correspond to
three possible initial fringe orders no, which must be
added to the fringe order along the crack. Due to the
presence of the craze, the crack tip displacement is non
zero and hence the straight lines do not pass through
the origin. The method has potential but some modifi-
cation is necessary. There is uncertainty about the
initial fringe order and in fact if different fringe orders
from those in the figure are assumed (2v)* and r are
still highly correlated with the correlation coefficients
being slightly less than those quoted in which
ny ranges from 3 to 5. It is also desirable to apply
a correction to allow for the effect, on the crack, of the
craze displacements and this is performed in the next
section.

3.2.4. Crack displacements with finite
element analysis

This method is based on a combination of inter-

ference optical measurements and finite element
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Figure 8 Displacements of one crack surface due to (a) prescribed
craze displacements, and (b) load, and (c) the combination of load
and craze displacements.

computations of the crack displacements. The latter
procedure is discussed first and is schematically illus-
trated in Fig. 8(a—c). The resultant displacement is
usually determined but it is more efficient to separate
the effects of the load and the prescribed displace-
ments. These effects differ from those of the stress since
the displacements due to the load are affected by the
modulus whereas those due to the prescribed displace-
ments are not. Crack displacements due to the latter
are shown in Fig. 8a. Since the prescribed craze dis-
placements are set to zero when computing the dis-
placements due to the load, the origin of the calculated
displacements will be the true crack tip. These dis-
placements are calculated using an E-modulus which
may be selected arbitrarily. Crack displacements sol-
ely due to the load are shown in Fig. 8b whilst Fig. 8c
shows the resultant displacement profile. The latter is
compared with the measured profile and the E value
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Figure 9 Estimated modulus values against distance from crack tip
for initial fringe orders of; (®) 3, (M) 4 and (A) 5 (same specimen as
Fig. 7).

used in the computation is varied until the measured
and calculated profiles agree. This is essentially the
method used to evaluate E although the actual pro-
cedure slightly differs as is described in the following
paragraph.

An arbitrary initial fringe order is selected and the
resultant displacement at selected points on one craze
surface is estimated from the measured displacement
profile. The chosen points correspond to nodal posi-
tions along the crack, if the nodes nearest the crack tip
are ignored. Since the crack displacements due to the
craze are independent of the modulus they can be
calculated at this stage even though the modulus is
unknown. These displacements are subtracted from
the measured ones to give estimates of the true crack
displacement v,, i.e., the displacement due to the load
alone. The corresponding finite element value, vg,, of
the latter is calculated using a modulus of 1 GPa.
Since the modulus is inversely proportional to dis-
placement, a Young’s modulus can be easily cal-
culated using;

E="e (10)
Uy

If the assumed fringe order is correct, then consistent
values of E will be obtained at the nodal positions. If
not, every value of v, is increased by one-quarter of
the wavelength of the monochromatic light used, for
every increase of 1 fringe in the new assumed initial
fringe order. An example of these calculations, using
the data of Fig. 7, is shown in Fig. 9 where the
estimated modulus is plotted against distance from the
crack tip. If the assumed initial fringe order at the
crack tip is too low then the modulus will be overes-
timated whereas it will be underestimated if the fringe
order is too high. In both cases the error decreases as
the distance from the crack tip increases. It is seen that
E is almost constant for an initial fringe order n, of 4.
The estimated modulus is 3.065 GPa which is clearly
significantly different from the Young’s modulus of
1.789 GPa obtained from the craze profile. This
method, based on displacements of the crack, which



carries no normal stress, is considered to give a good
estimate of the modulus of the sample since the strain
levels are low both in the region near the crack and in
the major part of the remainder of the specimen. This
estimate of E is in this case a first approximation since
the crack displacements due to those of the craze are
no longer independent of the modulus when the
sample is not of constant modulus.

4. Craze surface stress computation

Computations are carried out with two different ma-
terial moduli, one for the coarse mesh of Fig. 3a, and
the other for the fine mesh region shown in Fig. 3b.
Two cases are selected to illustrate the method. In the
first case the fine mesh region has the lower modulus
whereas it has the higher modulus in the second case.

4.1. Creep test

In this test, using PMMA the craze grew while the
crack remained stationary. The example chosen is for
a time of 84.7 x 10° s which is slightly less than one
day. Clear fringe patterns are available for both the
craze and the crack. The crack displacements were
analysed in Sections 3.2.3 and 3.2.4, yielding
a modulus of 3.065 GPa in the major part of the
specimen. The stress distribution is calculated with
this modulus in the coarse mesh and in the fine mesh
the modulus obtained from the craze profile of 1.789
GPa. The resultant distribution is plotted in Fig. 10a
with the distribution for a single modulus of 1.789
GPa shown for comparison in Fig. 10b. The latter is in
fact the distribution which would have been predicted
by the previous method [1-3]. The introduction of the
second modulus in the region outside the craze area
clearly has a very significant effect on the calculated
stress distribution. Any possible crack tip singularity
is cancelled which is consistent with the observation
that the crack remains stationary as the craze grows.
There appears to be a slight stress concentration at the
craze tip. This is because the position of the craze tip
has to be estimated by extrapolation of the interfer-
ence fringe pattern in the tip region and, in this case,
linear extrapolation appeared to be more realistic
than fitting the Dugdale model in this particular
region.

4.2. Crack propagation

The interference fringe pattern has been remeasured in
PMMA for a craze at the tip of a crack propagating at
a rate of 270 mms ™ '. It was not possible to measure
the fringe pattern due to the crack opening during
crack propagation. This may be because of the insuffi-
cient reflectivity of the freshly created crack planes
before the broken fibrils have retracted. In the finite
element analysis a modulus of 5.054 GPa, obtained
from the craze thickness profile, was used for the fine
mesh region. Since the crack displacements were not
known, the manufacturers measured value [10] of 3.3
GPa was used for the modulus of the remainder of the
specimen. The resultant stress distribution is plotted
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Figure 10 Craze surface stress distribution in a creep test
(K; = 0.51 MPam'/?, same specimen as Figs 7 and 9) determined
using (a) different moduli in craze vicinity (1.789 GPa) and in the
bulk (3.065 GPa) and (b) a single modulus (1.789 GPa).
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Figure 11 Craze surface stress distribution at the tip of a propaga-
ting crack in PMMA (K; = 1.25 MPam'/?, v = 270 mm s~ ') deter-
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the bulk (3.3 GPa) and (b) a single modulus (5.054 GPa).

2713



in Fig. 11a and the distribution for a single modulus of
5.054 GPais displayed in Fig. 11b. Comparison of the
two profiles reveals that in both cases there is a stress
peak at the crack tip, which is consistent with further
crack propagation, but the stress is significantly higher
with the bimodular analysis. Only the resultant stres-
ses have been calculated and it should be pointed out
that in the bimodular analysis the stresses solely due
to the load are no longer independent of the modulus.

5. Conclusions

The calculated craze surface stress distributions are
highly dependent on the modulus used in their evalu-
ation. An analysis based on a constant modulus
throughout the sample although it may be acceptable
in short-term tests or if the applied strain is constant
for most of the sample at a level which is not signifi-
cantly different from that in the region immediately
above the craze.

There are obviously more than two values of the
Young’s modulus at any time during these tests on
compact tension specimens with crack tip crazes.
Nevertheless, the area around the craze has a relative-
ly high strain whilst the strain in the remainder of the
specimen is low so that the two elastic moduli model is
a good starting point and a reasonable approxima-
tion. The modulus in the zone near the craze is best
obtained from the craze profile, using the method
described in Section 3.2.1, and the crack displacement
method of Section 3.2.4 should be used for the major-
ity of the specimen.

Previously, similar stress distributions have been
obtained for different loading systems whereas the
new analysis provides distributions which are consis-
tent with the tests as performed on PMMA. Thus, it is
seen that the stress peak at the crack tip is suppressed
in a case where the crack remains stationary and the
craze continues to grow. In the case of crack growth, it
is seen that at the crack tip the stress is increased and
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the crack will therefore continue to propagate through
the craze. In many cases the difference in the two
values of the modulus used in the analysis will be less
than it is for the two discussed examples and the effect
of the addition of the second modulus will be less
dramatic. However, Figs 10(a and b) and 11(a and b)
illustrate the potential of the new approach and also
promise more realistic craze contour stresses for other
thermoplastics.
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